ARPREC: An Arbitrary Precision Computation Package

David H. Bailey
Lawrence Berkeley National Laboratory
Berkeley, CA, USA 94720
dhbailey@lbl.gov

Collaborators:

Xiaoye S. Li, Lawrence Berkeley National Laboratory, Berkeley Brandon Thompson, University of California, Berkeley Yozo Hida, University of California, Berkeley David J. Broadhurst, Open University, UK

Types of High Precision Arithmetic

- Double precision (16 digits): Conventional 64-bit IEEE arithmetic.
- Double-Double (32 digits): Can be done by using IEEE arithmetic techniques. Approx. 5 times as expensive as DP.
- Quad-Double (64 digits): Can be done using IEEE arithmetic techniques. Approx. 5 times as expensive as DD.
- Arbitrary precision (100 to millions of digits): Requires arbitrary precision arithmetic software.

Integer Relation Detection

algorithm seeks integers a_i , not all zero, such that Given a real or complex vector $x = (x_1, x_2, \dots, x_n)$ an integer relation (IR)

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0$$

to within the available numerical accuracy.

- Original IR algorithm found in 1977 by Helaman Ferguson and Rodney Forcade.
- Current state of art: Ferguson's "PSLQ" algorithm recently named one of ten "algorithms of the century" by Computing in Science and Engineering.
- Very high numeric precision (hundreds or thousands of digits) must be employed in integer relation calculations.

Applications of PSLQ: Recognizing Numeric Constants

PSLQ. computing the vector $(1, \alpha, \alpha^2, \dots, \alpha^n)$ to high precision, and then applying If α is algebraic of degree n, the polynomial satisfied by α can be found by

Chaos theory example:

 $x_{k+1} = rx_k(1-x_k)$. In other words, B_3 is the smallest r such that successive iterates x_k exhibit eight-way periodicity instead of four-way periodicity. Let $B_3 = 3.54409035955 \cdots$ be the third bifurcation point of the logistic map

Computations using a predecessor algorithm to PSLQ found that B_3 is a root the polynomial

$$0 = 4913 + 2108t^2 - 604t^3 - 977t^4 + 8t^5 + 44t^6 + 392t^7 - 193t^8 - 40t^9 + 48t^{10} - 12t^{11} + t^{12}$$

polynomial, so that B_4 satisfies a 240-degree polynomial Recently a PSLQ program found that $\alpha = -B_4(B_4 - 2)$ satisfies a 120-degree

Applications of PSLQ: Euler Sums

Let $\zeta(t) = \sum_{j=1}^{\infty} j^{-t}$ be the Riemann zeta function, and $\text{Li}_n(x) = \sum_{j=1}^{\infty} x^j j^{-n}$ the polylogarithm function. The following were found using PSLQ computations:

$$\sum_{k=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{k}\right)^{2} (k+1)^{-4} = \frac{37}{22680} \pi^{6} - \zeta^{2}(3)$$

$$\sum_{k=1}^{\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{k}\right)^{3} (k+1)^{-6} = \zeta^{3}(3) + \frac{197}{24} \zeta(9) + \frac{1}{2} \pi^{2} \zeta(7)$$

$$-\frac{11}{120} \pi^{4} \zeta(5) - \frac{37}{7560} \pi^{6} \zeta(3)$$

$$\sum_{k=1}^{\infty} \left(1 - \frac{1}{2} + \dots + (-1)^{k+1} \frac{1}{k}\right)^{2} (k+1)^{-3} = 4 \operatorname{Li}_{5}(\frac{1}{2}) - \frac{1}{30} \ln^{5}(2) - \frac{17}{32} \zeta(5)$$

$$-\frac{11}{720} \pi^{4} \ln(2) + \frac{7}{4} \zeta(3) \ln^{2}(2)$$

$$+\frac{1}{18} \pi^{2} \ln^{3}(2) - \frac{1}{8} \pi^{2} \zeta(3)$$

Applications of PSLQ: Apery Sums

It has been known for some time, through the research of Apery, that

$$\zeta(2) = 3 \sum_{k=1}^{\infty} \frac{1}{k^2 \binom{2k}{k}}$$

$$\zeta(3) = \frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^3 \binom{2k}{k}}$$

$$\zeta(4) = \frac{36}{17} \sum_{k=1}^{\infty} \frac{1}{k^4 \binom{2k}{k}}$$

These results have led many to suggest that

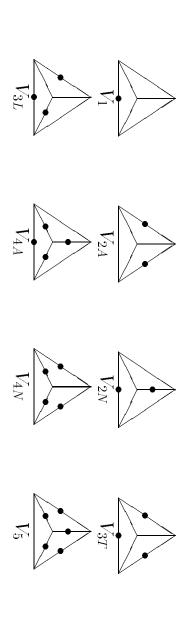
$$S(n) = \sum_{k>0} \frac{1}{k^n \binom{2k}{k}},$$

be expressed in terms of the Riemann zeta function $\zeta(n)$ and Clausen's function M(a,b). A sample evaluation is for n > 4, might be a simple constant. It has now been shown that S(n) can

$$S(9) = \pi \left[2M(7,1) + \frac{8}{3}M(5,3) + \frac{8}{9}\zeta(2)M(5,1) \right] - \frac{13921}{216}\zeta(9)$$

$$+ \frac{6211}{486}\zeta(7)\zeta(2) + \frac{8101}{648}\zeta(6)\zeta(3) + \frac{331}{18}\zeta(5)\zeta(4) - \frac{8}{9}\zeta^{3}(3)$$

Ten Tetrahedral Cases from Quantum Field Theory



Evaluations of constants associated with the ten cases:

$$V_{1} = 6\zeta(3) + 3\zeta(4) \qquad U = \sum_{j>k>0} \frac{(-1)^{j+k}}{j^{3}k}$$

$$V_{2A} = 6\zeta(3) - 5\zeta(4) \qquad C = \sum_{j>k>0} \sin(\pi k/3)/k^{2}$$

$$V_{2N} = 6\zeta(3) - \frac{13}{2}\zeta(4) - 8U \qquad V = \sum_{k>0} (-1)^{j}\cos(2\pi k/3)/(j^{3}k)$$

$$V_{3T} = 6\zeta(3) - 9\zeta(4) \qquad V = \sum_{j>k>0} (-1)^{j}\cos(2\pi k/3)/(j^{3}k)$$

$$V_{3S} = 6\zeta(3) - \frac{11}{2}\zeta(4) - 4C^{2}$$

$$V_{3L} = 6\zeta(3) - \frac{15}{4}\zeta(4) - 6C^{2}$$

$$V_{4A} = 6\zeta(3) - \frac{17}{12}\zeta(4) - 6C^{2}$$

$$V_{4A} = 6\zeta(3) - \frac{14\zeta(4) - 16U}{27}\zeta(4) + \frac{8}{3}C^{2} - 16V$$

$$V_{5} = 6\zeta(3) - 13\zeta(4) - 8U - 4C^{2}$$

A Quadrature Example

and DHB observed that if Using a high-precision numerical quadrature program, Jon Borwein, Greg Fee

$$C(a) = \int_0^1 \frac{\arctan(\sqrt{x^2 + a^2}) dx}{\sqrt{x^2 + a^2}(x^2 + 1)}$$

then

$$C(0) = \pi \log 2/8 + G/2$$

$$C(1) = \pi/4 - \pi\sqrt{2}/2 + 3\sqrt{2} \arctan(\sqrt{2})/2$$

$$C(\sqrt{2}) = 5\pi^2/96$$

Aug/Sept 2002). These particular results have now led to several general results. where G is Catalan's constant (the third result appeared in the MAA Monthly,

$$\int_0^\infty \frac{\arctan(\sqrt{x^2 + a^2}) \, dx}{\sqrt{x^2 + a^2}(x^2 + 1)} = \frac{\pi}{2\sqrt{a^2 - 1}} \left[2\arctan(\sqrt{a^2 - 1}) - \arctan(\sqrt{a^4 - 1}) \right]$$

Peter Borwein's Observation on the Binary Digits of log 2

calculated by using a very simple algorithm: In 1995, Peter Borwein observed that an arbitrary binary digit of log 2 can be

Let $\{\cdot\}$ denote the fractional part. Then we can write

$$\left\{ 2^{d} \log 2 \right\} = \left\{ 2^{d} \sum_{k=1}^{\infty} \frac{1}{k 2^{k}} \right\} = \left\{ \sum_{k=1}^{\infty} \frac{2^{d-k}}{k} \right\}
= \left\{ \sum_{k=1}^{d} \frac{2^{d-k}}{k} \right\} + \left\{ \sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k} \right\}
= \left\{ \sum_{k=1}^{d} \frac{2^{d-k} \mod k}{k} \right\} + \left\{ \sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k} \right\}$$

- The numerators $2^{d-k} \mod k$ can be very rapidly evaluated using the binary algorithm for exponentiation performed modulo k.
- Only a few terms of the second summation need be evaluated.
- All computations can be done with ordinary 64-bit floating-point arithmetic.

A More General Result

Any constant α given by a formula of the type

$$\alpha = \sum_{k=0}^{\infty} \frac{p(k)}{b^k q(k)}$$

for positive k) has the rapid individual digit computation property. (where p(k) and q(k) are integer polynomials, $\deg p < \deg q$ and q has no zeroes

Is there a formula of this type for π ? None was known in 1995.

The BBP Formula for π

which formulas of this type were known, with the numerical value of π appended, this formula was found for π : By applying DHB's PSLQ computer program to set of computed constants for

$$\pi = \sum_{k=0}^{\infty} \frac{1}{16^k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right)$$

Proof: An exercise in calculus.

Question: Why wasn't this formula discovered 250 years ago?

Some Other Constants with Base 2 BBP-Type Formulas

$$\log 3 = \sum_{k=0}^{\infty} \frac{1}{4^k (2k+1)}$$

$$\log 7 = \frac{3}{4} \sum_{k=0}^{\infty} \frac{1}{8^k} \left(\frac{2}{8k+1} + \frac{1}{8k+2} \right)$$

$$\pi^2 = \frac{1}{8} \sum_{k=0}^{\infty} \frac{1}{64^k} \left(\frac{144}{(6k+1)^2} - \frac{216}{(6k+2)^2} - \frac{72}{(6k+3)^2} - \frac{54}{(6k+4)^2} + \frac{9}{(6k+5)^2} \right)$$

$$\log^2 2 = \frac{1}{6} \sum_{k=0}^{\infty} \frac{1}{16^k} \left(\frac{16}{(8k+1)^2} - \frac{40}{(8k+2)^2} - \frac{8}{(8k+3)^2} - \frac{28}{(8k+4)^2} - \frac{2}{(8k+4)^2} \right)$$

$$-\frac{4}{(8k+5)^2} - \frac{4}{(8k+6)^2} + \frac{2}{(8k+7)^2} - \frac{3}{(8k+8)^2} \right)$$

$$\pi^2 - 6 \log^2 2 = 12 \sum_{k=1}^{\infty} \frac{1}{k^2 2^k}$$

$$\pi\sqrt{3} = \frac{9}{32} \sum_{k=0}^{\infty} \frac{1}{64^k} \left(\frac{16}{6k+1} - \frac{8}{6k+2} - \frac{2}{6k+4} - \frac{1}{6k+5} \right)$$

An Arctan Formula

$$\tan^{-1}\left(\frac{4}{5}\right) = \frac{1}{2^{17}} \sum_{k=0}^{\infty} \frac{1}{2^{20k}} \left(\frac{524288}{40k+2} - \frac{393216}{40k+4} - \frac{491520}{40k+5} + \frac{163840}{40k+8} + \frac{32768}{40k+10} - \frac{24576}{40k+12} + \frac{5120}{40k+15} + \frac{10240}{40k+16} + \frac{2048}{40k+18} + \frac{1024}{40k+20} + \frac{640}{40k+24} + \frac{480}{40k+25} + \frac{128}{40k+26} - \frac{96}{40k+28} + \frac{40k+32}{40k+32} + \frac{8}{40k+34} - \frac{5}{40k+35} - \frac{6}{40k+36}\right)$$

arguments. Similar formulas have been found for arctans of numerous other rational

Some Base 3 BBP-Type Formulas

$$\log 2 = \frac{2}{27} \sum_{k=0}^{\infty} \frac{1}{81^k} \left(\frac{9}{4k+1} + \frac{1}{4k+3} \right)$$

$$= \sum_{n=0}^{\infty} \frac{1}{9^n (2n-1)}$$

$$\pi^2 = \frac{2}{27} \sum_{k=0}^{\infty} \frac{1}{729^k} \left(\frac{243}{(12k+1)^2} - \frac{405}{(12k+2)^2} - \frac{81}{(12k+4)^2} - \frac{27}{(12k+4)^2} - \frac{27}{(12k+5)^2} \right)$$

$$-\frac{72}{(12k+6)^2} - \frac{9}{(12k+7)^2} - \frac{5}{(12k+8)^2} - \frac{1}{(12k+10)^2} + \frac{1}{(12k+11)^2}$$

$$6\sqrt{3} \tan^{-1} \left(\frac{\sqrt{3}}{7} \right) = \sum_{k=0}^{\infty} \frac{1}{27^k} \left(\frac{3}{3k+1} + \frac{1}{3k+2} \right)$$

Normality

base-b expansion of α appears with limiting frequency b^{-m} The real number α is normal to base b if every sequence of m digits in the

Widely believed to be normal base b for all bases b:

- π and e.
- $\log 2$ and $\sqrt{2}$.
- The golden mean $\tau = (1 + \sqrt{5})/2$.
- Every irrational algebraic number.
- Many other "natural" irrational constants.

But there are *no* proofs for any of these constants, for any base.

as Champernowne's number: 0.1234567891011121314.. Normality proofs exist only for handful of artifically constructed constants, such

A Connection Between BBP-Type Formulas and Normality

Theorem: The BBP-type constant

$$\alpha = \sum_{k=0}^{\infty} \frac{p(k)}{b^k q(k)}$$

for positive k) is normal base b if and only if the sequence $x_0 = 0$, and (where p(k) and q(k) are integer polynomials, $\deg p < \deg q$ and q has no zeroes

$$x_n = \left(bx_{n-1} + \frac{p(n)}{q(n)}\right) \bmod 1$$

is equidistributed in the unit interval.

Proof Sketch: Let α_n be the base-b expansion of α after the n-th digit. Following the BBP approach, we can write

$$\alpha_{n} = \left\{ \sum_{k=0}^{n} \frac{b^{n-k} p(k)}{q(k)} \right\} + \left\{ \sum_{k=n+1}^{\infty} \frac{b^{n-k} p(k)}{q(k)} \right\}$$
$$= \left(b\alpha_{n-1} + \frac{p(n)}{q(n)} \right) \mod 1 + E_{n}$$

where E_n goes to zero.

Two Examples

1. Let $x_0 = 0$, and

$$x_n = \left(2x_{n-1} + \frac{1}{n}\right) \bmod 1$$

Is (x_n) equidistributed in [0, 1)?

2. Let $x_0 = 0$ and

$$x_n = \left(16x_{n-1} + \frac{120n^2 - 89n + 16}{512n^4 - 1024n^3 + 712n^2 - 206n + 21}\right) \bmod 2$$

Is (x_n) equidistributed in [0, 1)?

If answer to Question 1 is "yes", then log 2 is normal to base 2.

2 also). If answer to Question 2 is "yes", then π is normal to base 16 (and hence to base

A Class of Provably Normal Constants

ity for a class of constants, the simplest instance of which is Using the BBP approach, Richard Crandall and DHB have now proven normal-

$$\begin{array}{lll} \alpha_{2,3} &=& \sum\limits_{k=1}^{\infty} \frac{1}{3^k 2^{3^k}} \\ &=& 0.041883680831502985071252898624571682426096\ldots_{10} \\ &=& 0.0\text{AB8E38F684BDA12F684BF35BA781948B0FCD6E9E0}\ldots_{16} \,. \end{array}$$

 $\alpha_{2,3}$ was actually proven normal base 2 in a little-known paper by Stoneham in ably infinite class that includes $\alpha_{2,3}$. 1977. Crandall and DHB proved normality and transcendence for an uncount-

These constants also possess the rapid individual digit computation property. The googol-th binary digit of $\alpha_{2,3}$ is zero

Overview of the ARPREC Package

- Based on earlier MPFUN-77 and MPFUN-90 Fortran packages
- Code written in C++ for high performance and broad portability.
- C++ and Fortran-90 translation modules that permit conventional C++ and source code Fortran-90 programs to utilize the package with only very minor changes to
- Arbitrary precision integer, floating and complex datatypes.
- Support for datatypes with differing precision levels.
- ullet Inter-operability with conventional integer and floating-point datatypes.
- Common transcendental functions (sqrt, exp, sin, etc).
- ullet Quadrature routines (for numerical integration).
- ullet PSLQ routines (for integer relation detection).
- \bullet Special routines for extra-high precision (> 1000 digits) computation.

Structure of ARPREC Multiprecision Data

- \bullet An array of 64-bit IEEE floats.
- Word 1: Number of words allocated for array.
- \bullet Word 2: Number of mantissa words used; sign is sign of number.
- Word 3: Exponent (powers of 2^{48}).
- Word 4 through n+3: Mantissa words, each in the range $[0, 2^{48})$.
- Word n+4 and n+5: For convenience in arithmetic routines.

Exact Arithmetic on 64-Bit IEEE Data

Double + double.

- 1. $s \leftarrow a \oplus b$
- 2. $v \leftarrow s \ominus a$
- 3. $e \leftarrow (a \ominus (s \ominus v)) \oplus (b \ominus v)$

Split.

- 1. $t \leftarrow (2^{27} + 1) \otimes a$
- 2. $a_{hi} \leftarrow t \ominus (t \ominus a)$
- 3. $a_{\text{lo}} \leftarrow a \ominus a_{\text{hi}}$

Double × **double** (not needed if system has fused multiply-add).

- 1. $p \leftarrow a \otimes b$
- 2. $(a_{\text{hi}}, a_{\text{lo}}) \leftarrow \text{SPLIT}(a)$ 3. $(b_{\text{hi}}, b_{\text{lo}}) \leftarrow \text{SPLIT}(b)$
- 4. $e \leftarrow ((a_{\text{hi}} \otimes b_{\text{hi}} \ominus p) \oplus a_{\text{hi}} \otimes b_{\text{lo}} \oplus a_{\text{lo}} \otimes b_{\text{hi}}) \oplus a_{\text{lo}} \otimes b_{\text{lo}}$

Normalize result (two words with 48 bits each).

- 1. $p' \leftarrow (p/2^{48} \oplus 2^{52}) \ominus 2^{52}$ 2. $e' \leftarrow (p p') \oplus e$

Performing High-Precision Multiplications Using FFTs

precision numbers, then their 2n-long product (except for release of carries) is merely the acyclic convolution of a and b: If $a = (a_j, j = 0, 1, \dots, n-1)$ and $b = (b_j, j = 0, 1, \dots, n-1)$ are two high-

Extend a and b by n zeroes, then compute:

$$c_k = \sum_{j=0}^{2n-1} a_j b_{k-j}$$

can thus be rapidly computed using an FFT: where the subscript k-j, if negative, is taken to be k-j+2n. These results

$$c_k = F_k^{-1}[F_k(a) \cdot F_k(b)]$$

where for example

$$F_k(a) = \sum_{j=0}^{2n-1} a_j e^{-2\pi i jk/(2n)}$$

Additional time can be saved by using real-to-complex and complex-to-real

Improvements from MPFUN to ARPREC

- Improved arithmetic performance: Schemes on previous viewgraph can be performed as register operations, which are very fast on modern RISC sys-
- Taylor's series routines: Routines for sine, cosine and exponential reduce precision as the size of terms decreases.
- Sine/Cosine: Argument is reduced to the nearest multiple of $\pi/256$, instead of $\pi/16$.
- FFT-based multiplication: A radix-four FFT algorithm is used, instead of a radix-two FFT.

Arithmetic Performance: ARPREC vs MPFUN

Arithmetic test loop (400 decimal digit precision):

- MPFUN = 14.78 seconds.
- ARPREC = 10.80 seconds.

Polylogarithmic ladder calculation (50,000 digit precision):

- MPFUN = 1408 CPU-hours on Cray T3E parallel system (32 CPUs).
- ARPREC = 1062 CPU-hours on IBM SP parallel system (64 CPUs).

Three State-of-the-Art Quadrature Routines

- Gaussian quadrature.
- Error function quadrature.
- Tanh-sinh quadrature.

High-Precision Gaussian Quadrature

An integral on [-1, 1] is approximated as the sum

$$\int_{-1}^{1} f(x) dx \approx \sum_{j=0}^{n} w_{j} f(x_{j}),$$

where the abscissas x_j are the roots of the *n*-th degree Legendre polynomial $P_n(x)$ on [-1, 1], and the weights x_j are

$$w_j = \frac{-2}{(n+1)P'_n(x_j)P_{n+1}(x_j)}$$

value $\cos[\pi(j-1/4)/(n+1/2)]$. The function $P_n(x)$ is computed using an n-long iteration of the recurrence $P_0(x) = 0$, $P_1(x) = 1$ and The abscissas x_j are computed using a Newton iteration scheme, with starting

$$(k+1)P_{k+1}(x) \ = \ (2k+1)xP_k(x) - kP_{k-1}(x)$$

for $k \geq 2$. The derivative $P'_n(x)$ is computed as

$$P'_n(x) = n(xP_n(x) - P_{n-1}(x))/(x^2 - 1)$$

The Euler-Maclaurin Formula and High-Precision Quadrature

Let h = (b - a)/n and $x_j = a + jh$. Then

$$\begin{split} \int_a^b f(x) \, dx \; &= \; \frac{h}{2} \left(f(a) + f(b) \right) + h \sum_{j=1}^{n-1} f(x_j) \\ &+ \sum_{i=1}^m \frac{h^{2i} B_{2i}}{(2i)!} \left(f^{(2i-1)}(b) - f^{(2i-1)}(a) \right) + E \end{split}$$

integral that does not depend on n or h. where the error term E is smaller than $h^{2m+1}/(2m+2)!$ times a certain definite

The E-M formula also applies for functions defined on an infinite interval, where f(x) and all its derivatives tend rapidly to zero for large x. In this case, we have

$$\int_{-\infty}^{\infty} f(x) dx = h \sum_{j=-\infty}^{\infty} f(x_j) + E$$

where the error term E tends to zero more rapidly than any power of h, as h

The Error Function Quadrature Scheme

Let $g(x) = \text{erf}(x) = (2/\sqrt{\pi}) \int_0^x e^{-t^2} dt$. Note that erf(x) ranges monotonically from -1 to 1. Thus we can write

$$\int_{-1}^{1} f(x) dx = \int_{-\infty}^{\infty} f(g(t))g'(t) dt$$

Since $g'(t) = 2/\sqrt{\pi} \cdot e^{-t^2}$ goes to zero rapidly for large t, the integrand on the RHS is, for many $f(x) \in C^{\infty}(-1, 1)$, a nice bell-shaped curve for which the E-M formula applies. Thus we can write

$$\int_{-1}^{1} f(x) dx \approx h \sum_{k=-\infty}^{\infty} f(g(kh))g'(kh) \approx h \sum_{k=-N}^{N} f(x_k)w_k$$

where $x_k = \operatorname{erf}(kh)$ and $w_k = 2/\sqrt{\pi} \cdot e^{-(kh)^2}$. The x_k and w_k values can be

whose derivatives tend to zero even faster The tanh-sinh quadrature scheme uses the function $g(t) = \tanh(\pi/2 \cdot \sinh t)$,

Test Problems for Quadrature Routines

Well-behaved continuous functions on finite itervals:

1:
$$\int_0^1 t \log(1+t) dt = 1/4$$
 2: $\int_0^1 t^2 \arctan t dt = (\pi - 2 + 2\log 2)/12$
3: $\int_0^{\pi/2} e^t \cot t dt = (e^{\pi/2} - 1)/2$ 4: $\int_0^1 \frac{\arctan(\sqrt{2+t^2})}{(1+t^2)\sqrt{2+t^2}} dt = 5\pi^2/96$

Continuous functions on finite itervals, but with a vertical derivative at an endpoint:

$$5: \int_0^1 \sqrt{t} \log t \, dt = -4/9 \qquad \qquad 6: \int_0^1 \sqrt{1 - t^2} \, dt = \pi/4$$

Functions on finite intervals with an integrable singularity at an endpoint:

$$7: \int_0^1 \frac{t}{\sqrt{1-t^2}} dt = 1 \qquad 8: \int_0^1 \log t^2 dt = 2$$
$$9: \int_0^{\pi/2} \log(\cos t) dt = -\pi \log(2)/2 \quad 10: \int_0^{\pi/2} \sqrt{\tan t} dt = \pi \sqrt{2}/2$$

Functions on an infinite interval:

$$11: \int_0^\infty \frac{1}{1+t^2} dt = \pi/2 \qquad 12: \int_0^\infty \frac{e^{-t}}{\sqrt{t}} dt = \sqrt{\pi}$$

$$13: \int_0^\infty e^{-t^2/2} dt = \sqrt{\pi/2}$$

Oscillatory functions on an infinite interval:

14:
$$\int_0^\infty e^{-t} \cos t \, dt = 1/2$$
 15: $\int_0^\infty \frac{\sin t}{t} \, dt = \pi/2$

Performance of Quadrature Routines on Test Problems

																Р	
15	14	13	12	11	10	9	∞	7	6	5	4	ಬ	2	\vdash	Init	Prob.	
5/9	4/9	5/9	9/9	6/6	9	9	9	9	9	9	6	೮٦	6	6	9	Level	
36.22	79.18	48.40	96.89	0.57	33.13	103.29	77.73	4.45	3.66	79.88	9.15	4.43	9.35	8.90	2755.08	Time	QUADGS
10-19	10^{-126}	10^{-364}	10^{-4}	0	10^{-4}	10^{-7}	10^{-6}	10^{-4}	10^{-12}	10^{-11}	10^{-420}	10^{-420}	10^{-422}	10^{-422}		Error	O 1
9/9	6/6	9/9	8/9	6/6	8	9	9	8	9	6	9	9	9	9	9	Level	5
44.11	145.89	70.26	63.56	5.38	7.96	74.59	69.73	2.45	4.00	72.97	100.07	48.04	39.91	60.43	138.81	Time	QUADERF
10-17	10^{-69}	10^{-97}	10^{-133}	10^{-409}	10^{-210}	10^{-416}	10^{-415}	10^{-210}	10^{-420}	10^{-420}	10^{-409}	10^{-419}	10^{-412}	10^{-421}		Error	^{2}F
7/9	7/9	7/9	6/9	8/8	6	7	7	6	7	7	8	7	∞	7	9	Level	
33.62	86.80	41.89	45.85	2.37	2.48	18.94	16.14	0.56	0.91	16.70	40.97	12.76	23.78	13.61	48.21	Time	STGAUG
10 ⁻¹⁹	10 ⁻¹⁶⁵	10-250	10-217	0	10 ⁻¹⁹⁴	10-390	10-417	10^{-196}	10 ⁻³⁹²	10-420	10-421	0	$3.78 \mid 10^{-421} \mid$	10-390		lime Error	SJ

The Experimental Mathematician's Toolkit

- Interactive tool based on ARPREC.
- All common arithmetic expressions use Mathematica format.
- Many common math constants π , e, $\log 2$, Catalan's constant, Euler's gamma constant, etc.
- Many common math functions sin, cos, exp, sqrt, erf, zeta, etc.
- Quadrature, on finite or infinite intervals (choice of 3 routines).
- Summations, with finite or infinite limits.
- PSLQ calculations (choice of 1-, 2- or 3-level multi-pair routines).

Test program now available from author.

For Full Details

- David H. Bailey, Peter B. Borwein and Simon Plouffe, "On The Rapid Comtation, vol. 66, no. 218, 1997, pp. 903–913. putation of Various Polylogarithmic Constants," Mathematics of Compu-
- David H. Bailey, "A Compendium of BBP-Type Formulas," 2002
- David H. Bailey and Richard E. Crandall, "On the Random Character of Fundamental Constant Expansions," Experimental Mathematics, June
- David H. Bailey and Richard E. Crandall, "Random Generators and Normal Numbers," 2002.
- David H. Bailey, Yozo Hida, Xiaoye S. Li and Brandon Thompson, "ARPREC: An Arbitrary Precision Computation Package," Oct 2002
- David H. Bailey, "A Comparison of Three High-Precision Quadrature Schemes,"

Computer code: http://www.nersc.gov/~dhbailey/mpdist Papers: http://www.nersc.gov/~dhbailey/dhbpapers